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Abstract. We sNdy the specuum of the fractional Brownian motion of Riemann-Liouville 
type using two approaches. namely the double frequency spectral density and the Wigner-Ville 
spectrum. The bifrequency representation gives a complex-valued function which contains two 
distinctive terms. These terms can be identified as the diagonal and off-diagonal diswibution 
of the spctrum in a frequency-frequency plane. The physical interpretation of these hw 
terms is briefly discussed. A olculation of Wigner-Ville spectrum gives an altemative way of 
representing the spectrum of this nonstationary process in the time-frequency plane. Asymptotic 
appmximation of the Wigner-Wlle spectrum is obtained. We show that the h e - t i m e  average 
spectrum of Riemann-Liouville fractional Brownian motion exhibits a pawer law in the high- 
frequency range. 

1. Introduction 

Many natural phenomena and man-made processes 111 exhibit empirical spectra which obey 
the fractional power law of the form t/f", 1 e ci c 3. this ubiquitous feature is frequently 
observed, for example, in mountain profiles 121, electrical noise in semiconductor devices 
[3], Kolmogorov's 513 power law in turbulence [4]. etc. However, a universally acceptable 
representation and characterization of the l/f" spectral behaviour is still unknown 1561. 
Perhaps the only similarity among these systems is the mathematical description that leads 
to such spectra. Several useful models are available, among them a class of processes based 
on the fractional integral representation. The most widely used model from this class is 
that of fractional Brownian motion introduced by Mandelbrot and Van Ness [7]. Fractional 
Brownian motion is in itself not a stationary process, but its increments are. This properly, 
together with self-affinity, allows one to obtain a generalized spectral density of power-law 
type for the process itself. 

Since fractional Brownian motion (FBM) of Mandelbrot and Van Ness (Mv) is defined for 
all times, it is not suitable for modelling phenomena that occur only in positive time. For 
the latter purpose it may be useful to consider the one-sided FBM. In fact, such a process was 
used by Barnes and Allan [SI to model flicker noise. Unfortunately, the undue emphasis on 
the time origin in the definition of this process has resulted in non-stationary increments, 
which in turn leads to the failure of its spectral density to obey the power law. 

The main aim of this paper is to reconsider the one-sided FBM (which we shall 
call Riemann-Liouville fractional Brownian motion (RL FBM) in this paper) to study the 
possibility of extracting more information from its spectral density. We shall investigate two 
types of generalized spectral densities for this non-stationary process, namely the double- 
frequency spectral representation and the Wigner-Ville spectrum. In particular, we want to 
find the conditions under which the spectrum of RL FBM exhibits power-law behaviour. 
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2. Riemann-Liouville fracdonal Brownian motion 

In an attempt to find a representation of a Gaussian l/f process, Barnes and Allan [8] 
defined a process based on the derivative of (H t f)th order Riemann-Liouville fractional 
integral [91 

where H > 0 and h ( t ) ,  f > 0 is the one-sided Gaussian white noise with mean zero and 
covariance 

( v ( t ) a ( s ) )  = @ ( t ) @ ( s ) W  - s) (2) 

where e(?) is the unit step function. X H ( I )  is Gaussian process with mean zero and 
covariance given by 

fors  > t and zFl is the hypergeometric function. We remark that xH(t) can also be defined 
for - f  < H Q 0, provided it is regarded as a generalized process, and terms involving 
fractional powers of time are to be regarded as a distribution [lo]. 

0, it is not time-@anslation invariant and therefore 
is a non-stationary process. It can be easily shown, however, that X H ( ? )  is statistically 
self-affine as it satisfies the following scaling relation 

Since RL FBM is defined for t 

xH(t)  -a-"XH(az) a > o (4) 

where = denotes equality in the statistical sense. The increments of RL FBM are not stationary 
and therefore not self-affine. We remark that self-affinity of the process together with 
stationary increments is crucial for the spectrum of the process to obey a power law. 

Before we disciss MV FBM, let us recall that the Omstein-Uhlenbeck process [ l l ]  
starting at t = 0 is defined (up to a constant) by replacing (r - T ) ~ - ;  by exp[-lt - 511 
in (1). This non-stationw Gaussian process becomes stationary if the lower Iimit of the 
integral is changed 60m zero to -W. If a similar change is carried out for RL FBM, i.e. one 
uses the Weyl fractional integral [9] instead of the Riemann-Liouville fractional integral, 
we have 

with q ( t )  defined for all t .  Now (5) is divergent for H > 0, but X,(t) is defined as a 
generalized stationary process for -; < H < 0. In their attempt to overcome this problem, 
Mandelbrot and Van Ness introduced the reduced form of FBM for 0 < H < 1: 
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It is known that (6) converges and one obtains Bx(r) as a non-stationary self-affine process 
with stationary increments. In fact, it can be shown that Bx(r )  defined above is the only 
mean-zero, mean-square continuous Gaussian self-affine process (satisfying BH(O) = 0) 
with stationary increments [12]. This last property allows one to obtain a generalized 
spectral density that obeys a power law behaviour. 

Despite the nice properties of MV FBM [13],  it cannot account for an important l / f  a 
process, namely the flicker noise with 01 = 1 or H = 0. In this case, FBM degenerates 
to the mvial process B x ( t )  = 0. More generally, H e 0 in (6) leads io processes that 
are not mean-square continuous; while H > 1 gives processes whose increments are not 
stationary. In comparison, RL FBM cover a larger range of H (with -5 c H e 0 as a 
generalized process), which may allow one to model some phenomena with properties not 
covered by MV FBM. We shall give a preliminary investigation of this possibility by studying 
the properties of the generalized spectral density of the process. 

3. Bifrequency spectrum of Riemann-Liouville fractional Brownian motion 

The spectral density of a stationary process is usually obtained by taking the Fourier 
transform of its time translation invariant covariance via the Wiener-Khintchine theorem 
[14]. This procedure does not apply to non-stationary processes, since in this case the 
covariance depends on both time parameters explicitly, which consequently leads to spectral 
density not dependent on a single frequency variable, o or 2n f. Instead, one should consider 
coordinates in the plane of two frequencies (w1 and 02). In the case of a stationary process, 
the spectral density lies on the bisector (o, = 02 = w )  . 

A natural extension of the notion of spectral density to non-stationary process is to apply 
the 'double ' Fourier transform to the covariance : 

Sxx (ol, w2) = RxH (tl , t2)ei(o't'-"h) d t l  drz (7) 

where S(w, ,  w2) denotes the bifrequency spectrum [15]. Note that (7) is exactly the double 
Fourier transform of R x , ( t l ,  tz) but the exponential terms carry opposite signs. Direct 
evaluation of this integral with the substitution of RxH ( f l ,  q) is rather difficult. Instead, we 
make use of the fact that RL FBM can be written in the following convolution form: 

11 

where h H + 1. The Fourier transform of h( t )  is given by 

The 'double' Fourier transform of the covariance of the one-sided white noise is 
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Combining (9) and (IO), one gets the following complex-valued bifrequency spectrum of 
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RL FBM: 

Sx,(wl, 0 2 )  = (Xh(OI)XH(%))  = h'(~~)h(q)(ll*(~~)ll(~z)) 

One can interpret SX,(OI, @) as 'generalized energy', in the following sense. Double- 
frequency spectrum allows one to know how the spectral 'mass' of the process X H ( t )  is 
distributed in the (01, @)-plane. The first term in (11) is the time-translational invariant 
or the stationary part of the bifrequency spectrum. It contains only the mean-square value 
of the random amplitude, i.e. the 'amount of energy'. The second term represents the 
non-stationary part of the bifrequency spectrum. It contains information about both the 
energy and the correlation between amplitudes with unequal 'frequencies' 01 and 02, i.e. 
the 'energy spread' about the diagonal w1 = @. In other words, the generalized energy 
of the process is not localized in frequency. The amount of the spread of energy tells us 
the degree of deviation from stationarity. In the case of positive w1 and @, we note that 
SxH (wl , w ~ )  = SiM (01, 02). which means a point located symmetrically in the bisector 
o1 = w2;  the values of the bispectral density are complex conjugates of one another, but 
are real on the bisector itself. 

It is also interesting to note that if we write W = 02 - w~ and keep either w1 or q 
constant, then the terms in the square bracket in (1 1) form a dispersion relation with the real 
and imaginary parts, forming a pair of Hilbert transforms. This is just a consequence of the 
fact that Fourier transform of a step function gives rise to a dispersion relation. However, 
we remark that SX,,(OI, 4) does not form a dispersion relation. Finally, it should be 
mentioned that the double frequency spectral density given above is slightly different from 
the result obtained by Wyss [16] using direct double Fourier transform without considering 
complex conjugation in one of the transforms, The double-frequency spectrum obtained 
here allows a more transparent interpretation for the energy distribution, especially in the 
positive frequencies domain. 

4. Wiper-ViUe Spectrum 

Instead of the bifrequency spectrum, one can also investigate the spectral behaviour of a 
non-stationary process using a time-varying spectrum. An important class of time-dependent 
spectral representation is the Wigner-Ville spectrum [17]. It was first introduced as the 
Wigner distribution in quantum mechanics [18] and later applied to signal analysis by 
Ville 1191. For a real-valued non-stationary Gaussian process with covariance Rx(t, s) the 
Wigner-Ville spectrum is given by [lS] 

For a stationary Gaussian process, Wigner-Ville spectrum reduces to the conventional 
spectrum. The main disadvantage of this spectrum is that it is not always positive. Despite 
this shortcoming, the Wigner-We spectrum is still regarded as one of the most useful 
time-frequency spectral representations. 

For RL FBM, a direct substitution of the covariance R x ~  ( f l ,  f2) in (12) once again gives 
a rather complicated integral. A simpler way of calculating Wx,(t, w )  in this case is to 
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make use of the property of the Wigner-Ville spectrum for convoluted signals. Recall that 
RL FBM can be expressed in the convolution form X H ( t )  = h( t ) .q ( f ) .  If W,, and W, are 
the Wigner-Ville spectra of h(t)  and q( t ) ,  respectively, then one can show that [17] 

m 
U'h(t-r,co)Wq(r,co)dr 

In the caSe of the one-sided white noise q( t ) ,  one gets 

If we let g ( r )  = h ( t  - $ ) h ( t  t $) then 

l o  otherwise. 
One gets 

where JH is the Bessel function of first kind of order H [20]. Finally we have 

It follows that 
H O t  

&H+1 wx, (t,co) = - [ J~(20f)H~-1(2Wt)  - J H - ~ ( ~ u X ) H H ( ~ W ~ ) ]  (17) 

where HH is the Struve function of order H .  One can verify the scaling property of this 
spectrum by considering a scaled FBM defined as XH,&) = XH(at ) ,  a > 0, and easily 
show that it satisfies 

It follows from (17) that 

WX,,.(t, O) = I V ~ H X H  (2. W )  (19) 

which is a second-order manifestation RL FBM's self-affinity in terms of rescaled time- 
frequency spectrum. Note that for H = ;, equation (17) reduces to the Wigner-Ville 
spectrum for the ordinary Brownian motion: 

1 
U2 

= ~ - [  1 - cos(ht)]  
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which agrees with the result obtained by Flandrin [211 as a special case of the Wigner-Wlle 

In general (except for half-integer H )  W x H ( r ,  o) does not exist in any closed form. 
Both J H  and H H  can be expressed as infinite series or transformed into special functions 
of other type such as the generalized hypergeometric functions. In order to extract some 
information (for example, explicit time and frequency dependence) from Wx,,(t,  U), we 
shall consider the asymptotic approximation for wt >> 1. The series expansions for J H ( z )  
and HH (2) are [221 

VM Sithi and S C Lim 

Sp~Ctrum fOr MV FBM. 

where Y H ( z )  i s  an Hth order Bessel function of second kind with the asymptotic expansion 
given by 

and (H, m) is the Hankel notation: 

r (H + m + f )  
d r  ( H  - m + $) ' (H,m)  = 

In the asymptotic expansion of (22). the remainder after p terms is of the same sign as, but 
numerically less than, the first term neglected, provided ( p +  1 - H )  2 0 1221. If we expand 
the series up to O(l/z), i.e. to p = 1, then we need to impose the restriction H < i. The 
asymptotic expansion of (17) up to O ( l / w t )  as or + 00 is given by 

for -4  < H < $; the third term is neglected as compared with the first two. One readily 
notices that the large argument expansion of the special functions allows one to freely set 
the range of the temporal evolution and the frequency such that o? >> 1. Nevertheless, one 
should bear in mind that the upper bound of the frequencies depends on the sampling rate 
(A?) or is given by the Nyquist frequency, i.e. o, = r / A t .  In addition, there also exists 
a low-frequency cut-off OJ,, which arises owing to the finite observation time. Therefore, it 
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seems appropriate to consider wg << w 4 w, together with large-time approximation as the 
latter condition always prevails in  most occurances of l/f noises [SI. 

It has been mentioned earlier that the Wigner-Ville spectrum is not always positive, 
while (25) turns out to be positive for H < 4. However, for f < H 4 4, Wx,(t.w) 
oscillates between increasing values of positive and negative amplitudes. 

In order to obtain explicit frequency dependence of the asymptotic Wigner-Ville 
spechum, we consider the time-average of W,, ( t ,  w), thus smoothening out its temporal 
dependence. This is done by averaging over a time interval of length T, namely 

where y(H + 4, ~k2iwT) is an incomplete gamma function. The spectrum in the above 
form does not allow one to deduce directly the large-time average of Wx,,(t, w) .  However, 
one can show that for large T the second term in (25) vanishes or equals a finite constant. 
Consider the following limit: 

1 1 
lim - 

T+mT r ( H + ; )  

.. 

-sin (5 2 [H + $1) cos(2ot)) at]. (27) 

According to the theory of improper semi-convergent Lebesgue integrals (see, e.g. [23]), 
the following improper trigonometric integrals are implied by the Abel theorem: 

T t o  
lim lr+" f ( t )  cosuf dt and J\% 1 f (t) sin ut dt 

T-rm 
a > 0 

converge if f ( t )  0 and decreasing with f ( t )  + 0 as t -+ 00. These conditions are 
satisfied by f ( t )  = constant ( ~ t ) ~ - f  for H < 4. With the inclusion of the averaging factor 
I/T, we conclude that the limit (27) converges for H < $. Hence, the large-tie average 
of the asymptotic Wigner-Ville spectrum is given by 

Equation (29) shows that the average spectrum of RL FBM obeys a simple power-law 
behaviour similar to the well known MV FBM but only in the high-frequency domain. With 
this result, one can envisage that RL FBM may show SCde invariance on a small-increments 
scale or a locally self-affine one. The analysis of the increment property of RL FBM will be 
presented in a forthcoming paper where we also investigate the fractal characteristics of RL 
FBM. 
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5. Conclusion 

Time-varying processes with fractional characteristics other than MV FBM have received 
liule interest in the past. RL FBM has been studied in passing by some authors [24,25] 
as a simplified version of MV FBM. We note, however, that there exist much difference 
between the statistical and the spectral properties in these two processes. In this paper we 
have presented two types of spectrum analysis for RL FBM. namely the double-frequency 
spectral density and the Wigner-Ville spectrum. The spectral interpretation based on the 
bifrequency distribution is considered to be informative. It provides a description of the 
nonstationary behavior in the frequency-frequency plane. However, a physical interpretation 
of the frequency and energy based on this spectrum is still not fully understood. In fact, the 
double-frequency spectral density of RL FBM can at best be regarded as 'generalized energy' 
distribution and the frequencies have to be interpreted in a similar sense. Therefore, a direct 
physical application of this spectrum is not plausible yet. 

The calculation of the Wigner-Ville spectrum of RL FBM gives an exact solution 
that involves special functions. The time-frequency dependence obtained in the form of 
the Bessel and Struve functions does not provide a useful and informative picture of 
the spectrum. The average-power spectrum deduced from the asymptotic Wigner-Ville 
spectrum showed power-law behavior at high frequencies. This suggests some possible 
applications of RL FBM to modelling physical phenomena that possess similar asymptotic 
behaviour. 

For example, the asymptotic power-law spectrum obtain above may be applied to 
modelling irregular time series and fractional noise processes with a l/f spectrum at high 
frequencies. One such example is the seismic signals generated by certain types of strong 
ground motions which occur during a random fracture of small-scale fault heterogeneous 
areas 1241. Another possible application of RL FBM is in the modelling of local random 
fractal trajectories functions or profiles 1261 which can be found in polymer physics [27] 
and in single-crack trajectories occuring in brittle fractures [28]. Detail studies of these 
topics are currently in progress. 
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